Question	Answer	Marks
1(a)(i)	red \quad and (the Cu^{2+} ion/copper ions) is gaining electrons/is decreasing in oxidation number;	$\mathbf{1}$
(a)(ii)	formation of $\mathrm{Cu}^{2+} /$ copper ions at the anode happens at the same rate as; removal of $\mathrm{Cu}^{2+} /$ copper ions at the cathode ora;	$\mathbf{2}$
(b)	replace (anode of) copper with nickel; replace electrolyte with nickel(II) sulfate/NiSO4;	1
(c)	(good) catalysts; variable oxidation numbers; form coloured compounds/coloured ions;	$\mathbf{2}$

2 (a (i) (attractive force between) positive ions [1]
and (negative) electrons [1]
opposite charges attract ONLY [1]electrostatic attraction ONLY [1]
(ii) lattice / rows / layers of lead ions / cations / positive ions [1] NOT: atoms / protons / nucleican slide past each other / the bonds are non-directional[1]
(b) anhydrous cobalt chloride becomes hydrated
ACCEPT: hydrous
(ii) carbon dioxide is acidic [1]
sodium hydroxide and calcium oxide are bases / alkalis [1]
(iii) Any two of:water, calcium carbonate and sodium carbonate[2]ACCEPT: sodium bicarbonate
(c) number of moles of CO_{2} formed $=2.112 / 44=0.048$ [1]
number of moles of $\mathrm{H}_{2} \mathrm{O}$ formed $=0.432 / 18=0.024$[1]$x=2$ and $y=1$ NOT: ecf from this lineformula is $2 \mathrm{PbCO}_{3} \cdot \mathrm{~Pb}(\mathrm{OH})_{2} / \mathrm{Pb}(\mathrm{OH})_{2} .2 \mathrm{PbCO}_{3}$[1]
$\mathrm{Fe}+\mathrm{Sn}^{2+} \rightarrow \mathrm{Fe}^{2+}+\mathrm{Sn} / 2 \mathrm{Fe}+3 \mathrm{Sn}^{2+} \rightarrow 2 \mathrm{Fe}^{3+}+3 \mathrm{Sn}$
for realising that there would be a reaction shown by an attempt to write an equation e.g. writing $\mathrm{Fe}_{2} \mathrm{Sn}$ etc. allow [1]
no reaction
(ii) tin oxide, nitrogen dioxide (accept nitogen(IV) oxide/dinitrogen tetroxide), oxygen All three for two accept correct formulae
any two correct products
(b) (i) tin
(ii) $4 \mathrm{OH} \rightarrow \mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}$
not balanced allow [1]
(iii) sulfuric acid
(c) zinc is more reactive than iron/steel
tin is less reactive than iron/steel
zinc corrodes/reacts/loses electrons/is oxidised/is anodic/provides sacrificial protection/ forms positive ions (in preference to iron or steel) ORA allow iron is cathodic for this mark.

Iron/steel corrodes/reacts/rusts/loses electrons/is oxidised/is anodic/forms positive ions (in preference to tin). ORA
allow tin is cathodic for this mark

4 (a (i) red brown or orange to colourless
not just bromine decolourised
yellow (not dark) / white solid / precipitate / goes cloudy
brown to yellow with no mention of solid/precipitate scores = [1]
(ii) $\mathrm{Br}_{2}+\mathrm{Na}_{2} \mathrm{~S} \rightarrow 2 \mathrm{NaBr}+\mathrm{S}$
(iii) look for two comments
sulfide (ion) / sulfur (ion) loses electrons
not sodium sulfide
bromine accepts them
(b) (i) oxidation
not redox
(ii) hydrogen / H_{2}
not H
(iii) iron(II) hydroxide / ferrous hydroxide
(iv) $4 \mathrm{Fe}(\mathrm{OH})_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{Fe}(\mathrm{OH})_{3}$
(v) oxidation number or state or valency increases / electron loss / Fe^{2+} to Fe^{3+} not gains oxygen
(vi) sacrificial protection or zinc is sacrificed /
zinc corrodes not iron or zinc corrodes therefore iron doesn't /
not just zinc rusts
zinc is oxidised in preference to iron /
zinc reacts with oxygen and water in preference to iron /
zinc more reactive or electropositive than iron /
zinc forms ions more readily than iron or zinc loses electrons more readily than iron / electrons move on to iron /
iron is cathode or zinc is anode /
any three
(a (i) bauxite [1]
(ii) to reduce melting point or improve conductivity [1] or as a solvent or reduce the working temperature
(iii) carbon dioxide or monoxide or fluorine [1]
(b) aluminium [1]
(ii) solution goes colourless or copper formed [1] or a brown solid forms or blue colour disappears or bubbles
NOT goes clear or copper formed
(iii) covered with an oxide layer [1]
(c) reaction no reaction [1] [1]
reaction
reaction reaction reaction
(d) $\quad 2 \mathrm{Al}(\mathrm{OH})_{3}=\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}$[2]Not balanced [1]
(ii) Aluminium nitrate $=$ aluminium oxide + nitrogen dioxide + oxygenonly TWO correct products [1]
6 (a)(i) 38p 38e 50n [1]
38p 38e 52n [1]
30p 28e 35n [1]
(ii) Same number of protons and different number of neutrons [1]
(iii) $8+2$ [1]
(b)(i) heat zinc blende in air to form oxide [1]
reduce oxide with carbon [1]
(ii) galvanising
sacrificial protectionalloysbatteriesroofing
Any ONE [1]
(c)(i) hydrochloric acid [1]
(ii) $\mathrm{Sr}^{2+}+2 \mathrm{e}=\mathrm{Sr}$ [1]
$2 \mathrm{Cl}-2 \mathrm{e}=\mathrm{Cl}_{2}$ [1]or $2 \mathrm{Cl}=\mathrm{Cl}_{2}+2 \mathrm{e}$
(iii) hydrogen [1] and strontium hydroxide [1]
(d)(i) zinc + water $=$ zinc oxide + hydrogen [1]
heat [1] steam [1]
(ii) $\mathrm{Sr}+2 \mathrm{H}_{2} \mathrm{O}=\mathrm{Sr}(\mathrm{OH})_{2}+\mathrm{H}_{2}$ [2]
Not balanced [1] cold water [1]

